If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+4a-1=0
a = 1; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·1·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{5}}{2*1}=\frac{-4-2\sqrt{5}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{5}}{2*1}=\frac{-4+2\sqrt{5}}{2} $
| -2+8s=7s | | 2(-x+3x)+3(-x)+7=(-x)+-3 | | -s=2s+9 | | 24x^2+128x+3=0 | | 6+6c=5c | | 64=5a/4-2 | | -9m=-10m+6 | | 5n=-7+6n | | X+4y=44 | | -7w=-8w+8 | | 24x^2-64x+3=0 | | 0.02x2+0.1-2=0 | | 4x-5(4x+11)=9 | | 6x+4(5x+8)-12=2(9x-15)-6 | | 0,3y-1,2=0,6y-1,2 | | 3y×8=2y | | 6x+26+16x=180 | | 25,000=(0.5×102)(0.5×10n) | | 12x-199=3x-10 | | 2(2+2y)=-4 | | 24x=+(25)(4.5) | | 7x+3=9x-33 | | 24x+(25)=(4.5) | | (X+3)*12=x*18 | | 7-2x=9+6x | | (3x-15)/5=15 | | 9+7x=14+6x | | 7x−3x=16 | | 1/5x+2=-4 | | X2-24x+42=15 | | f+(-32)=-6 | | 4n-13=39 |